Pivot mount assembly

  • Inventors: HECKMAN TOM
  • Assignees: Tom Heckman
  • Publication Date: December 02, 2010
  • Publication Number: US-2010301185-A1

Abstract

A pivot mount assembly for mounting an electronic device (e.g., an Electronic Flight Bag—EFB) in the cockpit of an aircraft, and more specifically on the steering control (i.e., yoke) of the aircraft. The pivot mount assembly preferably includes an upper portion and a lower portion, where the upper portion is rotatable with respect to the lower portion. The upper portion includes a receiving slot for receiving a device to be mounted, and the lower portion includes a securing mechanism and a positioning flange. A receiving mount within the yoke receives the positioning flange to position the pivot mount assembly within the same, and the securing mechanism operates in conjunction with the receiving mount to secure the lower portion to the same, and thereby the entire pivot mount assembly within the receiving mount. Once mounted in the receiving mount, the upper portion of the assembly is rotatable with respect to the lower portion, thereby allowing the EFB to be mounted to be rotated from a portrait to a landscape orientation without removing the same from the mount. In one implementation, an indexing position system is integrated between the lower and upper portions of the mount assembly and provides predetermined rotation increments for the mounted device.

Claims

1 . An aircraft pivot mount assembly for mounting an electronic device to the steering control of the aircraft, the pivot mount assembly comprising: an upper portion having a top surface including a receiving slot configured to receive and secure the electronic device to be mounted thereon; a lower portion connected to the upper portion such that the upper portion is rotatable with respect to the lower portion, the lower portion having positioning flange on an underside thereof and a securing mechanism disposed along a lower edge of the lower portion; and a mounting receiver mounted on the steering control of the aircraft and configured to receive said positioning flange and said securing mechanism of said lower portion. 2 . The pivot mount assembly according to claim 1 , further comprising: an indexing position system integrated between said upper portion and said lower portion such that said upper portion rotates with respect to said lower portion in an predetermined indexed manner. 3 . The pivot mount assembly according to claim 2 , wherein indexing position system comprises: at least one set screw having a spring loaded ball bearing tip positioned within said lower portion; and at least one detent on an underside of said upper portion and rotatably aligned with said at ball bearing of said at least one set screw. 4 . The pivot mount assembly according to claim 1 , wherein said receiving slot is tapered such that the electronic device to be mounted therein slidably engages said receiving slot from one side thereof only. 5 . The pivot mount assembly according to claim 4 , wherein said receiving slot further comprises side walls having an angular configuration such that the electronic device to be mounted cannot be lifted out of the receiving slot once positioned therein. 6 . The pivot mount assembly according to claim 4 , wherein said slot further comprises at least one hole for receiving a locking mechanism of the electronic device to be mounted. 7 . The pivot mount assembly according to claim 1 , wherein the electronic device comprises a navigation device. 8 . The pivot mount assembly according to claim 6 , wherein the navigation device comprises an electronic flight bag (EFB). 9 . The pivot mount assembly according to claim 1 , wherein the steering control comprises an aircraft yoke. 10 . The pivot mount assembly according to claim 9 , wherein the aircraft is a GULFSTREAM® G4.
BACKGROUND [0001] 1. Technical Field [0002] The present invention relates to mounting assemblies. More particularly, it relates to a pivotable/rotatable mounting assembly for mounting an electronic device within the cockpit of an aircraft, and more specifically to the steering control (yoke) of an aircraft. [0003] 2. Description of related art [0004] To date the use of maps and other navigation documents in an aviation or boating environment results in difficulties to read the same and simultaneously maintain proper operation of vehicles and respective operating systems. Currently there are systems in place that are essentially clip boards mounted to the steering wheels or other operation controls in an effort to hold the navigation documents in front of tic operator of the respective vehicles. [0005] With the age of technology, attempts have been made to provide the navigation documents in electronic form to the various vehicle operators. One example of such electronic forms in an aviation environment is referred to as an Electronic Plight Bag (EFB). The EFB is an electronic device that has a memory for storing navigation documents, and a display screen for selectively displaying the stored navigation documents in response to the user's input. The EFB device is bulky and very heavy, and cannot be simply secured to the steering controls (i.e., yoke) of an airplane. In addition, the EFB is generally rectangular in shape and can be used in both a portrait and landscape orientation. Thus there are many instances during the use of the EFB where the display can change from portrait to landscape orientation. [0006] Current mounting capabilities of the EFB do not allow for the rotation of the same without dismounting it first. As such, when the instance occurs where the display changes from a portrait to a landscape orientation during operation, the pilot is forced to remove the EFB from its mount and/or review the same with the incorrect orientation. [0007] Thus, it becomes apparent that there is need for a device that can enable the mounting of an EFB device to the steering controls (e.g., yoke) of an aircraft so as to enable the operator (pilot) to quickly and easily rotate the same from a portrait orientation to a landscape orientation (i.e., 90 degrees) without interfering with their ability to operate the aircraft and without requiring the removal of the EFB from its mount. SUMMARY OF THE INVENTION [0008] This and other aspects are achieved in accordance with the present invention, wherein the aircraft pivot mount assembly for mounting an electronic device to the steering control of the aircraft includes an upper portion having a top surface including a receiving slot configured to receive and secure the electronic device to be mounted thereon, a lower portion connected to the upper portion such that the upper portion is rotatable with respect to the lower portion, the lower portion having positioning flange on an underside thereof and a securing mechanism disposed along a lower edge of the lower portion, and a mounting receiver mounted on the steering control of the aircraft and configured to receive said positioning flange and said securing mechanism of said lower portion. [0009] A indexing position system is integrated between the upper portion and the lower portion such that the upper portion rotates with respect to the lower portion in an predetermined indexed manner. The indexing position system can include at least one set screw having a spring loaded ball bearing tip positioned within the lower portion, and at least one detent on an underside of said upper portion and rotatably aligned with said at ball bearing of said at least one set screw. [0010] According to a preferred implementation the receiving slot is tapered such that the electronic device to be mounted therein slidably engages the receiving slot from one side thereof only. The receiving slot further comprises side walls having an angular configuration such that the electronic device to be mounted cannot be lifted out of the receiving slot once positioned therein. The receiving slot further includes at least one hole for receiving a locking mechanism of the electronic device to be mounted. [0011] According to the preferred implementation, the electronic device is a navigation device and is preferably an electronic flight bag (EFB) mounted on the yoke of an aircraft, for example a GULFSTREAM® G4. [0012] Other aspects and features of the present principles will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the present principles, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein. BRIEF DESCRIPTION OF THE DRAWINGS [0013] In the drawings wherein like reference numerals denote similar components throughout the views: [0014] FIG. 1 a is top perspective view of the pivot mount assembly according to an implementation of the invention; [0015] FIG. 1 b is a bottom perspective view of the pivot mount assembly according to an implementation of the invention; [0016] FIG. 1 c is a top perspective view of the pivot mount assembly of FIG. 1 a shown rotated 90 degrees; [0017] FIG. 1 d is a top perspective view of the pivot mount assembly of FIG. 1 a shown rotated 180 degrees; [0018] FIG. 2 a is a top exploded view of the pivot mount assembly according to an implementation of the invention; [0019] FIG. 2 b is a bottom exploded view of the pivot mount assembly according to an implementation of the invention; [0020] FIG. 3 is a plan view of the upper portion of the pivot mount assembly according to an implementation of the invention; [0021] FIG. 4 a is a bottom perspective view of the upper portion of the pivot mount assembly according to an implementation of the invention; [0022] FIG. 4 b is a cross-sectional view of the upper portion of the pivot mount assembly taken along lines B-B of FIG. 4 a; [0023] FIG. 4 c is a cross-sectional view of the upper portion of the pivot mount assembly taken along lines C-C of FIG. 4 a; [0024] 022 FIG. 4 d is an enlarged view of the circled detailed portion shown in FIG. 4 c; [0025] FIG. 5 a is a bottom perspective view of the lower portion of the pivot mount assembly according to an implementation of the invention; [0026] FIG. 5 b is a plan view of the lower portion of the pivot mount assembly according to an implementation of the invention; [0027] FIG. 5 c is a side view of the lower portion of the pivot mount assembly according to an implementation of the invention; [0028] FIG. 6 a is a cross-sectional view of the lower portion of the pivot mount assembly taken along line VI-VI of FIG. 5 b; [0029] FIG. 6 b is an enlarged view of the circled detailed portion shown in FIG. 6 a; [0030] FIG. 7 is a cross-sectional view of the pivot mount assembly taken along lines VII-VII of FIG. 1 a; [0031] FIGS. 8 a and 8 b show the connection the pivot mount assembly to a receiver according to an implementation of the invention; [0032] FIGS. 9 and 10 show the pivot mount assembly connected to the center of the yoke of an airplane controller; and [0033] FIGS. 11 and 12 show an electronic flight bag (EFB) connected to the pivot mount assembly according to an implementation of the invention. DETAILED DESCRIPTION [0034] Referring to FIGS. 1 a and 1 b, there is shown the pivot mount assembly 10 according to a preferred implementation of the invention. Pivot mount assembly 10 is preferably made up of an upper portion 12 and a lower portion 20 . The upper portion 12 includes and upper surface 14 having a receiver/mounting slot 16 for receiving a device to be pivotally mounted. Within the receiver/mounting slot 16 is one or more holes or indents 18 which assist in the securing of the device to be pivotally mounted. In this respect, the device to be mounted would preferably include a locking mechanism that would engage the one or more holes 18 in the slot 16 . Alternatively, the device to be mounted can include the holes and the holes 18 in slot 16 would be replaced with a mechanism that engages the holes in the device to secure the same therein. [0035] According to the preferred implementation, the lower portion 20 includes a position flange 24 and a locking flange 22 having a locking groove 26 . [0036] FIG. 1 c shows the pivot mount assembly 10 with the upper portion 12 rotated 90 degrees with respect to the lower portion 20 . FIG. 1 d shows the pivot mount assembly 10 with the upper portion 12 rotated 180 degrees with respect to the lower portion 20 . [0037] FIGS. 2 a and 2 b show the connection interface between the upper portion 12 and the lower portion 20 according to a preferred implementation of the invention. Lower portion 20 includes a central hole or aperture 40 for receiving a shoulder screw 50 wherein the shoulder portion 56 resides within hole 40 and the threaded portion 58 engages the central hole/aperture 30 in the upper portion 12 (See FIG. 7 ). In this manner, the shoulder 56 allows the upper portion 20 to rotate with respect to lower portion 20 , while maintaining a secure connection between the two portions. In addition, lower portion 20 includes set holes 42 - 42 d that receive set screws 52 . Set screws 52 are unique in that they include a spring loaded ball bearing 54 . [0038] The upper portion 12 includes one or more detents 32 a - 32 d that are positioned such that the bearings 54 of the corresponding set screw can be received into the detent and thereby provide an indexed rotatable movement of the upper portion 12 with respect to the lower portion 20 . FIG. 7 shows a cross section view where the ball bearings 54 of the set screws 52 are shown in the corresponding detents 32 a and 32 c when the pivot mount assembly is fully assembled. Those of skill in the art will recognize that the number of detents 32 can be changed depending on the desired application. As shown with four detents in the current configuration, the upper portion is indexed to 90 degree rotations. Additional detents can be added to increase the indexed rotation options. Alternatively, detents 34 can be removed, and the friction between the ball bearings 52 of the set screws 50 can be used to provide an infinite angular rotation options. Detents 32 , as used herein, can be replaced with other analogous structures, such as indentations, notches, etc. In addition, those of skill in the art will recognize that the location of the set screws and detents can be switched (i.e., between the upper and lower portions) without departing from the spirit of the present disclosure. [0039] FIG. 3 shows a plan view of the upper portion 12 according to a preferred embodiment where the receiving/mounting slot 16 is shown in a tapered configuration from one end to the other, and also as having side walls with an angular configuration, such that the slot walls have an angle α which, in this example can be 60 degrees. As a result of the tapered configuration of the slot 16 , the device to be mounted in the receiving/mounting slot 16 can be inserted only from one direction A as shown. According to a preferred implementation, the angular configuration of the side walls operate retain the device to be mounted (by preventing the same from being lifted out of the slot 16 in a transverse manner), and the holes (or detents) 18 can preferably be used as part of a locking or securing mechanism for securing the pivot mount assembly to the device to be mounted. [0040] FIGS. 4 a - 4 d shows the upper portion 12 and various cross sections according to the preferred implementation of the invention. These views show the configuration of the upper portion 12 and detents 32 that work in conjunction with the set screws 52 . [0041] FIG. 5 a - 5 c show the lower portion 20 according to the preferred implementation of the invention. The lower portion 20 preferably includes the position flange 24 on one side of the underside of thereof and a securing flange 22 on the opposing side. The securing flange preferably includes a securing groove 26 that can extend across the width of the corresponding side of the lower portion. [0042] FIGS. 6 a and 6 b shows a cross section view of the lower portion 20 where the angular configuration of the position flange 24 is more clearly shown. The angular outer face 28 of the flange 24 preferably has an angle β that assists in the positioning of the same into a mounting receiver. The angle β can be, for example, 60 degrees. [0043] FIGS. 8 a and 8 b show an example of the mounting of the lower portion into a mounting receiver 80 according the preferred embodiment. In this example, the mounting receiver 80 preferably includes a slot 82 configured to receive the position flange 24 as shown in FIG. 8 a where angular face 26 of the flange 24 corresponds to the angular wall 84 within the slot 82 . Once flange 24 is positioned within slot 82 , the locking flange 22 is pivoted downward into the mounting receiver 80 such that groove 26 is aligned with a securing screw bole 86 such that securing screw 88 can be inserted therein. FIG. 8 b shows lower portion 20 secured into the mounting receiver 80 . Those of skill in the art will recognize that mounting receiver 80 is shown here as an example and that such receiver shall have the appropriate accommodations so as to not interfere with the shoulder screw 50 or set screws 52 on the underside of lower portion 20 . [0044] FIG. 9 and 10 show the preferred application of the pivot mount assembly 10 in an aviation environment. As shown, the pivot mount assembly 10 is mounted to the center of the yoke 90 of a GULFSTREAM® G4 jet using a mounting receiver 80 as described above (GULFSTREAM is a registered trademark of the Gulfstream Aerospace Corporation). Although shown in the preferred implementation for a GULSTREAM jet, those of skill in the art will recognize that the pivot mount assembly of the present invention can be utilized in other aircrafts, such as, for example, commercial and cargo aircrafts and other manufacturer's private jets. FIG. 9 shows the pivot mount assembly 10 in a first position, and FIG. 10 shows the pivot mount assembly in a second position rotated 90 degrees from the first position. [0045] In accordance with the preferred implementation of the invention, the receiving/mounting slot 16 of the pivot mount assembly 10 is configured to receive an Electronic Flight Bag (EFB) device. FIGS. 11 and 12 show an EFB 100 mounted to the pivot mount assembly of the invention in a first (portrait) position and a second 90 degree rotated (landscape) position, respectively. [0046] While there have been shown, described and pointed out fundamental novel features of the present principles, it will be understood that various omissions, substitutions and changes in the form and details of the methods described and devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the same. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the present principles. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or implementation of the present principles may be incorporated in any other disclosed, described or suggested form or implementation as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (22)

    Publication numberPublication dateAssigneeTitle
    US-2008035960-A1February 14, 2008Samsung Electronics Co., Ltd.Electromechanical memory devices and methods of manufacturing the same
    US-2008179478-A1July 31, 2008Michael LeeAdaptor for vehicle mounts
    US-2011084106-A1April 14, 2011Raytheon CompanyElectronic Flight Bag Mounting System
    US-2011278415-A1November 17, 2011Electronic Cable Specialists, Inc.Electronic flight bag mounting bracket
    US-2012080462-A1April 05, 2012Hamid Cyrus HajarianWristband/ armband handheld device holder
    US-3243153-AMarch 29, 1966John V Kelly, Frank D NigroAdjustable clamp
    US-3809338-AMay 07, 1974E Gross, D Yauger, W PyneTimer and approach plate holder for aircraft
    US-4698838-AOctober 06, 1987Aisin Seiki Kabushiki Kaisha, Toyoda Gosei Co., Ltd.Steering wheel having a telephone
    US-4969623-ANovember 13, 1990Bernier Rene AFlight documents organizer
    US-5086958-AFebruary 11, 1992Giselle NagyVehicular accessory mounting organization
    US-5222690-AJune 29, 1993Jeffords Lloyd MVehicular desk or information display
    US-5392350-AFebruary 21, 1995Swanson; Paul J.Support apparatus for a transportable telephone
    US-5769369-AJune 23, 1998Meinel; JamesMobile office stand for supporting a portable computer or electronic organizer in vehicles
    US-5941488-AAugust 24, 1999Rosen Product Development, Inc.Monitor support with self-positioning guide track
    US-6522748-B1February 18, 2003Chin-Yang WangAdjustable supporting frame
    US-6588719-B1July 08, 2003Hollingsead International, Inc.Mounting and support bracket
    US-7172164-B2February 06, 2007Fuelling Richard A, Rowan Michael WModular accessory holder
    US-7270309-B2September 18, 2007Vantage Point Products Corp.Apparatus for mounting a flat panel display
    US-7686250-B2March 30, 2010Fortes Hugo L, Armand Wong, Robert Alfonso, Alex Rodrigo, Raul Segredo, Stylian CocalidesElectronic display mount
    US-8231081-B2July 31, 2012Avionics Support Group, Inc.Electronic display mount
    US-8256726-B2September 04, 2012Lino Manfrotto + Co. S.P.A.Head for video-photographic apparatus
    US-8261954-B2September 11, 2012High Gear Specialties, Inc.Mount with anti-rotation feature

NO-Patent Citations (0)

    Title

Cited By (0)

    Publication numberPublication dateAssigneeTitle